ScienceDaily (Aug. 29, 2012) ? Flat panel displays and many digital devices require thin, efficient and low-cost light-emitters for applications. The pixels that make up the different colors on the display are typically wired to complex electronic circuits, but now researchers at A*STAR have developed a display technology that requires a much simpler architecture for operation.
Flat panel displays, mobile phones and many digital devices require thin, efficient and low-cost light-emitters for applications. The pixels that make up the different colors on the display are typically wired to complex electronic circuits that control their operation. Jing Hua Teng at the A*STAR Institute of Materials Research and Engineering and co-workers have now developed a display technology that requires a much simpler architecture for operation. They demonstrated that combining a thin perforated gold film with a liquid crystal layer is all that it takes to make an efficient color filter.
"Our color filters are a lot thinner and more compact than conventional thin-film-based color filters," says Teng. "The colors of these filters can be tuned with ease so they are very versatile in applications."
The color selection of the devices comes from the patterned gold film. The collective motions of the electrons on the film surface -- the so-called surface plasmons -- absorb light at wavelengths that depend on the details of these patterns. In the present case, the patterns are narrow, nanometer-sized rings cut out of the films (see image). As the diameter of the rings changes, so does the color of the metal film. Pixels of a different color can be realized simply by patterning rings of different sizes across the same gold film.
To realize a full display, however, each of these pixels needs to be turned on and off individually. This is where liquid crystals come in.
Liquid crystals are molecules that can be switched between two different states by external stimuli, such as ultraviolet light. In their normal state the crystals let visible light pass through so that the pixel is turned on. But when ultraviolet is also present, the structure of the liquid crystal molecules will change so that it absorbs visible light (i.e. the pixel is turned off). This process can be repeated over many cycles without degrading the device itself.
Although the device works in principle, it remains a concept on the drawing board for now. This is because there are still many issues that need to be overcome, for example, the optimization of the switching speed and the contrast between 'on' and 'off' states. In future work, the researchers will need to extend their ideas so that their device can serve a larger area and produce the fundamental colors red, green and blue.
Teng and his team are quite optimistic that they will achieve this soon.
The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by The Agency for Science, Technology and Research (A*STAR), via ResearchSEA.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
- Yan Jun Liu, Guang Yuan Si, Eunice S. P. Leong, Ning Xiang, Aaron J. Danner, Jing Hua Teng. Light-Driven Plasmonic Color Filters by Overlaying Photoresponsive Liquid Crystals on Gold Annular Aperture Arrays. Advanced Materials, 2012; 24 (23): OP131 DOI: 10.1002/adma.201104440
Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.
luke kuechly brad miller chandler jones peyton hillis carolina panthers fletcher cox charlotte bobcats
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.